Calibration model transfer, update and maintenance for on-line application. Comparison of the three existing approaches

01/12/09

S.Preys – J.Lallemand - ONDALYS M.Zeaiter – S.Holland - GSK

- I. Context = Quality by Design
- II. Methods for real-time-release model transfer, update and maintenance
- III. Presentation of the case study
- IV. Results for the comparison of the 3 approaches
- V. Conclusions

I. Context = Quality by Design

Quality by Design

Based on Moheb Nasr's slides (FDA) - 27 April 2009 at AAPS modelling workshop

Outline

- Quality by Design (QbD)
- Models in a QbD approach
 - Models for design space

 Models for control strategy and continual improvement

Concluding comments

Model Maintenance and Update

In a QbD approach, process learning does not stop at product launch

- Design space can be reassessed and updated
- Models that are part of the control strategy may need to be periodically reassessed and updated

- I. Context = Quality by Design
- II. Methods for real-time-release model transfer, update and maintenance
- III. Presentation of the case study
- IV. Results for the comparison of the 3 approaches
- V. Conclusions

- Standardisation set available:

- Measurement of a set of standard samples under the different conditions
- Source of variability G value is measurable (e.g. NIR instrument change)

→ Existing approaches:

Piecewise Direct Standardisation (PDS) Piecewise Reverse Standardisation (PRS) Bias / slope

- Measurement of a set of samples under the new different conditions
- Source of variability G value is not necessarily measurable

→ Existing approaches:

External Parameter Orthogonalisation (EPO)

Orthogonal Signal Correction (OSC) on experimental design

Generalised Least Squares (GLS)

3rd scenario = only a few reference control points available

- Few (1 or 2) reference control points available:

- Neither standard sample nor small experimental design
- Source of variability G value is not measured

- I. Context = Quality by Design
- II. Methods for real-time-release model transfer, update and maintenance

III. Presentation of the case study

- IV. Results for the comparison of the 3 approaches
- V. Conclusions

- Solid drug product
- Drying process (fluid-bed dryer)
- On-line NIR monitoring of a quality critical attribute = solvent residuals
- Reference method by GC

III. Presentation of the case study Calibration model

Calibration by leave-one-batch-out Cross-Validation after outlier removal

- I. Context = Quality by Design
- II. Methods for real-time-release model transfer, update and maintenance
- III. Presentation of the case study
- **IV.** Results for the comparison of the 3 approaches
- V. Conclusions

1 – Small drift effect = batch effect

Test on TEST1 DP1 (same line, instrument and product)

1 – Small drift effect = batch effect

Corrections using the 3 approaches on TEST1 DP1 (same line, instrument and product)

				Mith aut	Discond	Model update		
			Figures of Merit	correction (1LV)	slope correction	Model re- development (2LV)	DOP correction (1LV)	<i>Reference control points</i>
	L1, I1, DP1	Batch 58	SEP BIAS R ²	0.046 -0.028 0.965				0
Batch effect		Batch 98	SEP BIAS R ²	0.079 -0.071 0.835		0.036 -0.004 0.807	0.038 -0.006 0.797	1 (1 st)
		Batch 108	SEP BIAS R ²	0.160 -0.152 0.887	0.079 -0.045 0.815	0.037 -0.025 0.969	0.032 -0.014 0.963	1 (1 st)
nore effect	L1, I1, DP1	Batch 58	SEP BIAS R ²		0.172 0.155 0.856	0.048 0.009 0.945	0.044 -0.012 0.956	0
No r batch								

MRD and DOP outperform BS when the influence factor disappears

1 – Small drift effect = batch effect

DOP correction on TEST1 DP1 (same line, instrument and product)

2 – Large block effects = line, instrument and product effects

Test on TEST2 DP2 (different line, instrument and product)

2 – Large block effects = line, instrument and product effects

Corrections using the 3 approaches on TEST2 DP2 (different line, instr. and prod.)

		Figures of Merit	Without correction (1LV)	Bias and slope correction (1LV)	Model update		
					Model re- development (2LV)	DOP correction (1LV)	Reference control points
L2, I2, DP2	Batch 36	SEP BIAS R ²	3.967 -3.967 0.989	0.054 0.038 0.974	0.096 0.069 0.925	0.043 0.001 0.969	2 (1 st and 2 nd)
	Batch 37	SEP BIAS R ²	3.979 -3.978 0.989	0.059 0.014 0.977	0.110 0.051 0.931	0.076 0.001 0.959	0
l effects	Batch 43	SEP BIAS R ²	3.901 -3.900 0.949	0.110 0.089 0.970	0.141 0.116 0.954	0.088 0.056 0.967	0
R	Batch 44	SEP BIAS R ²	3.938 -3.938 0.996	0.062 0.053 0.993	0.129 0.104 0.961	0.069 0.032 0.975	0
	Batch 45	SEP BIAS R ²	4.061 -4.061 0.944	0.069 -0.059 0.916	0.119 0.107 0.815	0.056 0.032 0.860	0
effect Peffect Peffect	Batch 58	SEP BIAS R ²	0.046 -0.028 0.965	3.582 3.581 0.952	0.044 0.003 0.951	0.045 0.008 0.952	0

DOP outperforms MRD for strong effects when very few references

GlaxoSmithKlin

2 – Large block effects = line, instrument and product effects

DOP correction on TEST2 DP2 (different line, instrument and product)

- I. Context = Quality by Design
- II. Methods for real-time-release model transfer, update and maintenance
- III. Presentation of the case study
- IV. Results for the comparison of the 3 approaches
- V. Conclusions

Conclusions

✓ Different algorithms for model maintenance or transfer when neither standardisation set nor small experimental design is available: bias/slope correction (BS), model re-development (MRD) and DOP correction

✓ DOP and MRD outperform BS when the influence factor disappears

✓ DOP outperforms MRD when using a minimal number of reference control points, especially for strong effects (product effect)

➔ DOP is the most suited to specific applications (quick model update, costly reference control points, start of a new condition of manufacturing, ...)

✓ MRD can only be used when a large number of reference control points are available

