

Suivi de l'action antioxydante des diphénylamines par spectroscopie infrarouge et résolution multivariée de courbes

<u>N. Gracia^{1,2,3}</u>, S. Thomas¹, P. Bazin¹, L. Duponchel², F. Thibault-Starzyk¹, O.Lerasle³

Laboratoire Catalyse et Spectrochimie (**LCS**), Caen Laboratoire de Spectrochimie Infrarouge et Raman (**LASIR**), Lille **Total**, Centre de Recherche de Solaize (CReS), Solaize

> Congrès du Groupe Français de Chimiométrie 30 novembre et 1er décembre 2009

Paris

- Généralités sur les huiles de base
- Problématique industrielle
- Protocole expérimental
- Extraction de données par la technique MCR-ALS pour le suivi d'antioxydant de type diphénylamine

Lubrifiant

 Se dit d'un produit qui graisse, rend glissant, pour atténuer le frottement entre deux objets dont l'un est en mouvement par rapport à l'autre

Phénomène d'oxydation

- Épaississement du lubrifiant
- Création de dépôts et de vernis
- Acidification du milieu

Mécanismes radicalaires multivoies

Problématique industrielle

- Contraintes thermiques
- Allongement de l'intervalle entre deux vidanges
- Protection de l'environnement
 - Nécessité de mieux connaître le mécanisme
 pour optimiser l'utilisation des antioxydants
 - Analyse spectroscopique in situ combinée aux méthodes chimiométriques

Problématique industrielle

- Contraintes thermiques
- Allongement de l'intervalle entre deux vidanges
- Protection de l'environnement

Nécessité de mieux connaître le mécanisme pour optimiser l'utilisation des antioxydants

Analyse spectroscopique in situ combinée aux méthodes chimiométriques

Problématique industrielle

- Contraintes thermiques
- Allongement de l'intervalle entre deux vidanges
- Protection de l'environnement

Nécessité de mieux connaître le mécanisme
 pour optimiser l'utilisation des antioxydants

Analyse spectroscopique in situ combinée
 aux méthodes chimiométriques

Protocole expérimental

- Chauffage 15h à 167℃
- Bullage O₂ pur
- IRTF transmission
- Domaine spectral: 400 4000 cm⁻¹
- Fenêtres CaF₂
- Chemin optique: 100 µm
- 1 spectre / 45s
- > 1000 sp

Spectres types

Richesse de l'information spectrale

Nombreux recouvrements

Spectres types

Richesse de l'information spectrale

Nombreux recouvrements

Spectres types

Richesse de l'information spectrale

Nombreux recouvrements

Multivariate Curve Resolution – Alternating Least Squares^[1]

Modèle bilinéaire: $D = C.S^T + E$

Estimation du nombre d'espèces pures (par l'étude de la SVD)

Estimation des profils de concentration par OPA^[2]

Contraintes: non-négativité des spectres et des concentrations

[1] R. Tauler, Chemometr. Intell. Lab. Syst., 30 (1995), 133-146.

[2] F.C. Sanchez, J. Toft, B. Van den Bogaert, D. L. Massart, Anal. Chem. 68 (1996) 79-85.

Méthode itérative

 $C_{ini} \rightarrow S_1^T = C_{ini}^{-1} D \rightarrow S_1^{*T} \rightarrow C_1 = D S_1^{*T-1} \rightarrow C_1^* \rightarrow S_2^T = C_1^{-1} D \rightarrow \dots$

Extraction simultanée, rang 4

Méthode itérative

 $C_{ini} \rightarrow S_1^T = C_{ini}^{-1} D \rightarrow S_1^{*T} \rightarrow C_1 = D S_1^{*T-1} \rightarrow C_1^* \rightarrow S_2^T = C_1^{-1} D \rightarrow \dots$

Extraction simultanée, rang 4

Méthode itérative

 $C_{ini} \rightarrow S_1^T = C_{ini}^{-1} D \rightarrow S_1^{*T} \rightarrow C_1 = D S_1^{*T-1} \rightarrow C_1^* \rightarrow S_2^T = C_1^{-1} D \rightarrow \dots$

Extraction simultanée, rang 4

1ère famille d'espèces: apparition des espèces carbonylées

2ème famille d'espèces: formation d'alcools/énols

3399 cm⁻¹: ν (O-H) alcools

1642 cm⁻¹: v(C=C)

NH

R

3ème famille d'espèces: disparition de la forme de départ de l'antioxydant ($R=C_9H_{19}$)

3435 cm⁻¹: v(N-H)

1606 et 1601 cm⁻¹: v(C=C) des cycles aromatiques

1516 cm⁻¹: respiration du squelette aromatique

4ème famille d'espèces:

1505 cm⁻¹: un seul pic d'absorbance identifiable

Cycle d'action théorique des diphénylamines

 $Ar_2NO + RO_2 = forme stable$

Regeneration of Amine in Catalytic Inhibition of Oxidation R. K. Jensen, S. Korcek, M. Zinbo, and J. L. Gerlock J. Org. Chem., 1995, 60 (17), 5396-5400

Interprétation des résultats

- Formation d'énols: affinement du mécanisme d'oxydation
- Disparition de la forme diphenylamine de départ
- Formation de nitroxides
- Prédiction du positionnement pendant la période d'induction
- Amélioration possible de la durée de vie du lubrifiant

Conclusion

- Objectif: développement d'une méthode analytique pour une meilleure compréhension de l'oxydation des lubrifiants moteur
- **Spectroscopie IRTF:** richesse de l'information moléculaire, analyse in situ en temps réel
- **Résolution MCR-ALS:** extraction simultanée et sans a priori des informations sur des produits complexes
- Perspectives: étude d'huiles de natures différentes avec le même antioxydant, et de la même huile avec d'autres antioxydants; utilisation de MCR-ALS en analyse multivoie