

# A view of metabolomics from a chemometrics perspective

## Rui CLIMACO PINTO with Johan TRYGG

- Umeå University – Sweden -

# Overview

- Umeå chemometrics/bioinformatics group CLiC
- Metabolomics
- Integration of chemometrics in metabolomics
- Multivariate regression / Discriminant analysis
- OPLS and O2PLS framework
- Examples of chemometrics in metabolomics

## Umeå, Sweden



University built in 1965 25 000 students / 4000 staff



۰'

## Collaboration: Umeå Plant Science Center Excellence centre in plant biology



transgenic Poplar

# UMEÅ – CLiC

**Objectives:** 

- Stimulate, organize and advance computer based modelling, tools and strategies to understand complex biological systems and e-bioscience

- Be the critical and missing link to the ongoing strong experimental research at Umeå University (UPSC, UCFB, FuncFiber, MIMS, UCMR and UCMM centers) -Establish a unique bioinformatics/e-science profile in Umeå

Main research areas:

- Omics-technologies (mainly transcriptomics, proteomics, metabolomics)
- Network modeling, databases and visualization
- Structural biology and sequence analysis

#### Group leaders:

Antti, Henrik (Assoc. Prof.) - Predictive and Human Metabolomics
Hedenström, Mattias (Ass.Prof.) - Characterization of plant material and biofluids using NMR spectroscopy
Hvidsten, Torgeir (Ass.Prof) - A systems biology approach to model the transcriptional network in trees
Linusson Jonsson, Anna (Ass.Prof) - Probing molecular interactions of protein-ligand complexes guided by an integration of chemometrics and molecular modelling
Rydén, Patrik (Ass.Prof.) - Pathogenicity of Francisella tularensis
Sauer, Uwe (Assoc.Prof) - BioCrystallography and BioInformatics
Sjöström, Michael (Prof.) - Multivariate quantitative structure activity relationships (M-QSAR)
Stenberg, Per (Ass.Prof) - Mining functional DNA elements in eukaryotic genomes
Trygg, Johan (Assoc.Prof) - Chemometrics in metabolomics, 'omics profiling and systems biology

## Trygg group's chemometrics in 'Bio-'

Tree biology: Functional genomics in transgenic Poplar trees

Umeå Plant Science Center

#### Disease diagnosis & biomarker identification

• Rheumatoid Arthritis, Diabetes 1 & 2, Huntington, etc...

#### Medicine (Post operative surgery): Kidney transplant

Monitor immune suppression vs toxicity with NMR spectroscopy

#### **Dietary:** Functional foods

Health effect from food supplement with NMR & GC-MS spectroscopy

#### Medical imaging by ultrasound

• Study muscle tissue physiology and function in rehabilitation





Urine test to monitor kidneytransplant rejection



A urine test that diagnoses acute rejection without the need for an invasive biopsy



## Metabolomics

# Metabolomics - definitions

Supporting thesis: Functional status of a complex biological system resides in the quantitative and qualitative pattern of metabolites in body fluids

- **Metabolome** Complete set of metabolites to be found within a biological sample
- Metabolite
  - Small biological molecules, intermediates and products of metabolism
  - Primary: main functions (growth, development, reproduction)
  - Secondary: ecological function (ex. antibiotics and pigments)
- **Metabolomics** systematic study of the unique chemical fingerprints that specific cellular processes leave behind (MS)
- **Metabonomics** quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification (NMR)

# Metabolomics

- Instrumental analysis
  - Mainly GC-MS, LC-MS, NMR
  - Also Raman, FTIR
  - Large amounts of data
- Use of chemometrics
- Disease diagnosis, functional genomics, toxicology, plant science, nutrition, pharmaceutical and environmental research, personalized medicine
- Today trend in biological interpretation rather than only classify samples

# Personalised medicine

 Personalized medicine – refine the empirical approach used in most clinical trials by incorporating powerful new diagnostics that can identify individual predictive characteristics and better control variability

Metabolomics in personalised medicine

- Drug metabolism pathways
- Definition of disease subsets
- Definition of groups of patients
- Monitoring treatment response
- Prevention
- Drug safety

J. Woodcock, Clinical Pharmacology & Therapeutics, 81 (2007) 164

## Metabolomics – steps



Madsen, R.; Lundstedt, T.; Trygg, J.; Chemometrics in metabolomics - A review in human disease diagnosis, Analytica chimica acta, in print.

## Metabolomics – Simplified view



## **Biological samples**

## Biochemical analysis of endogenous metabolites

Data





Challenge in modern biology:

maximizing information

### GC-TOF/MS-based metabolomics platform



Gullberg, J.; Jonsson, P.; Nordström, A.; Sjöström, M.; Moritz, T.; **Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of** *Arabidopsis thaliana* **samples in metabolomic studies with gas chromatography/mass spectrometry**, Analytical Biochemistry, **2004**, 331, 283-295.

Jiye A.; Trygg, A.; Gullberg, J.; Johansson, A.; Jonsson, P.; Antti, H.; Marklund, S.; Moritz, T.; Extraction and GC/MS Analysis of the Human Blood Plasma Metabolome, Analytical Chemistry, **2005**, 77, 8086-8094.

## NMR and GC / LC-MS methods - Umeå

- Trees
- Arthrytis in human (>300) and rats (>200)
- Diabetes (2 mouse models, >200 samples)
- Huntington disease
- LC-MS methods for amino-acids in final phase of development. Adding compounds
- LC-MS for lipids and hormones in preparation
- Bacterian and human cell cultures for analysis in GC / LC

Integration of Chemometrics in metabolomics

- DOE, MVD
- PCA
- MCR
- OPLS (OPLS, O2PLS, OPLS-DA)



## REVIEW: metabolomics literature 2002-2006

#### • Chemometrics – reduced to a data modelling tool

- ANOVA- analysis of variance (hypothesis testing)
- Overview of data (Principal component analysis)
- Two class discrimination (PLS-DA, SIMCA)
- Metabolomics reduced to NMR/MS based technique
  - ... with many interesting case studies, samples
- Chemometrics + Metabonomics
  - Samples + NMR/MS based characterisation + PCA/PLS-DA

## -Is this enough?

#### Not many papers had been published...

...that aim for the the whole chain of planning, sampling, experimental characterisation, modelling, visualisation and interpretation...

... especially, regarding validating the hypothesis made based on models.



#### **Chemometrics in Metabonomics**

Johan Trygg,† Elaine Holmes,‡ and Torbjörn Lundstedt\*.5J

Research group for Chemometrics, Institute of Chemistry, Umeà University, Sweden, Biological Chemistry, Biomedicinal Sciences Division, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom, Department of Pharmaccutical Chemistry, Uppsala University, Sweden, and AcurePharma, Uppsala, Sweden

#### Received November 11, 2006

We provide an overview of how the underlying philosophy of chemometrics is integrated throughout metabonomic studies. Four steps are demonstrated: (1) definition of the aim, (2) selection of objects, (3) sample preparation and characterization, and (4) evaluation of the collected data. This includes the tools applied for linear modeling, for example, Statistical Experimental Design (SED), Principal Component Analysis (PCA), Partial least-squares (PLS), Orthogonal-PLS (OPLS), and dynamic extensions thereof. This is illustrated by examples from the literature.

Keywords: Statistical Experimental Design (SED) • PCA • OPLS • Class-specific studies • Dynamic studies • Multivariate Design

#### **Integration Chemometrics/Metabolomics**

providing information for studying complex systems

#### 1. Define the aim

- What do we want?
- What is known already / what more knowledge is needed?

#### 2. <u>Selection of objects</u>

- Design of Experiments (DOE)
  - Samples, time points, replicates...

#### 3. Sample preparation and characterisation

- Experimental protocol optimization
  - Extraction, derivatization, instruments parameters optimization...
  - Randomization of samples for GC/LC/NMR analysis by day, disease/control...
- Data processing
  - Align peaks, correct baseline, curve resolution, normalisation, scaling

#### 4. Evaluation/Validation of collected data

- Exploratory analysis
- Multivariate design
- Interpretation & Visualization
- Class-specific study
- Dynamic study

# 1. Define the aim

- What do we want? Example for disease diagnostics:

|             | Metabolomics /             | Metabolic                | Metabolite profiling   |  |  |
|-------------|----------------------------|--------------------------|------------------------|--|--|
|             | metabonomics               | fingerprinting           |                        |  |  |
| Description | Comprehensive analysis     | Fast classification of   | Quantification of a    |  |  |
|             | with identification and    | samples based on         | number of pre-defined  |  |  |
|             | quantification of as many  | metabolite data, without | metabolites            |  |  |
|             | metabolites as possible in | necessarily quantifying  |                        |  |  |
|             | a biological system, done  | or identifying the       |                        |  |  |
|             | in an unbiased way         | individual metabolites.  |                        |  |  |
| Potential   | Diagnosis + biomarker      | Diagnosis method         | Diagnosis + biomarker  |  |  |
| use         | discovery + biological     |                          | discovery + biological |  |  |
|             | understanding              |                          | understanding          |  |  |

– What is known already / what more knowledge is needed?

- Literature review

- Known biomarkers
- Other extraction procedures, solvents, instruments

Madsen, R.; Lundstedt, T.; Trygg, J.; Chemometrics in metabolomics - A review in human disease diagnosis, Analytica chimica acta, in print.

# 2. Selection of objects

• Design of Experiments (DOE)





#### Reduce residual variability



#### Study design

#### **Dynamic studies**

- Allow slow/fast responders
- Different sampling times



## DoE: Greenhouse design study

#### "biological variation"

- Experimental design
  - Initial conditions
  - Growth conditions
  - Position in greenhouse
  - Harvesting conditions
  - Grinding / Storage
  - Sample preparation





Observed vs Predicted <sub>Pr</sub> height (cm)





Greenhouse overview

# 3. Sample preparation and characterization

#### 3.1. Experimental protocol optimization

- Solvents for extraction, derivatization, instruments parameters optimization...
- Randomization of samples for GC/LC/NMR analysis by day, disease/control...

|                  |               |          |         | amoun        |         |            |                |                                                                                                       |
|------------------|---------------|----------|---------|--------------|---------|------------|----------------|-------------------------------------------------------------------------------------------------------|
| ID no            | run order     | methanol | ethanol | acetonitrile | acetone | chloroform | plasma         |                                                                                                       |
| N1 <sup>a</sup>  | 20, 14, 18    | 800      | 0       | 0            | 0       | 0          | 0.50           | Ethand                                                                                                |
| N2               | 6             | 0        | 800     | 0            | 0       | 0          | 0.501          |                                                                                                       |
| N3               | 31            | 0        | 0       | 800          | 0       | 0          | 0.40           | Acetonitrite3_4                                                                                       |
| N4               | 11            | 0        | 0       | 0            | 800     | 0          | 0.401          | Thus of real of Pare 1                                                                                |
| N5               | 24            | 600      | 0       | 0            | 0       | 200        | 0.001          | Chicosetta in strendaro                                                                               |
| N6               | 18            | 0        | 600     | 0            | 0       | 200        | 0.30           | estearate 2 - 14 Line 2 Source 1000 Company 1                                                         |
| $N7^{b}$         | 3             | 0        | 0       | 600          | 0       | 200        |                | neutral als 2 phospheria a valitione                                                                  |
| N8 <sup>e</sup>  | 19, 12, 21    | 0        | 0       | 0            | 600     | 200        | 0.20           | Phospae_1 Cysleine                                                                                    |
| N9               | 1             | 0        | 0       | 0            | 735     | 65         | t              | Urea () Factore                                                                                       |
| N10              | 23            | 0        | 0       | 535          | 265     | 0          | 0.10           | CASTRIC 2                                                                                             |
| N11              | 15            | 0        | 0       | 265          | 535     | 0          | t              | <ul> <li>Lactate</li> <li>Affiliacity and an anti-<br/>Affiliacity and an anti-<br/>actate</li> </ul> |
| N12              | 30            | 0        | 535     | 0            | 265     | 0          | <u> 전</u> 0.00 |                                                                                                       |
| N13              | 25            | 0        | 265     | 0            | 535     | 0          | 0 I            | Puthine S                                                                                             |
| N14              | 16            | 0        | 535     | 265          | 0       | 0          | \$ -0.10       | and an and an and an                                              |
| N15              | 27            | 0        | 265     | 535          | 0       | 0          | - 1            | =painitateratera                                                                                      |
| N16 <sup>a</sup> | 29, 9, 17     | 665      | 0       | 0            | 0       | 135        | -0.20          | Gluamine 2                                                                                            |
| N17              | 4             | 535      | 0       | 0            | 265     | 0          | +              | inalmitate                                                                                            |
| N18              | 5             | 265      | 0       | 0            | 535     | 0          | -0.30          | "GluBose_1,"                                                                                          |
| N19              | 13            | 535      | 0       | 265          | 0       | 0          |                | * Chale Brose Stines Rol-1-phosp                                                                      |
| N20              | 22            | 265      | 0       | 535          | 0       | 0          | -0.40          | Phoseate 4                                                                                            |
| N21              | 32            | 535      | 265     | 0            | 0       | 0          |                | Abadeas                                                                                               |
| N22              | 8             | 265      | 535     | 0            | 0       | 0          | -0.50          | -Acetone                                                                                              |
| N23              | 7             | 0        | 235     | 235          | 235     | 100        |                |                                                                                                       |
| N24 <sup>d</sup> | 26, 2, 33, 10 | 200      | 200     | 200          | 200     | 0          | -0.60          | -Chloroform                                                                                           |
|                  |               |          |         |              |         |            | L 1            |                                                                                                       |

#### Solvent DoE

-0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 W\*C[1]

# 3. Sample preparation and characterization

#### 3.1. Experimental protocol optimization

- Solvents for extraction, derivatization, instruments parameters optimization...
- Randomization of samples for GC/LC/NMR analysis by day, disease/control...

| expt<br>no.            | methanol,<br>μL      | incubation <sup>a</sup><br>°C, min | extraction<br>min     | incubation <sup>b</sup><br>°C, min | oximat<br>°C, ł | ion silylation<br>°C, h                    |
|------------------------|----------------------|------------------------------------|-----------------------|------------------------------------|-----------------|--------------------------------------------|
| N1                     | 700                  | 0, 10                              | 1                     | 0, 10                              | 20, 16          | 20, 1                                      |
| N2                     | 700                  | 70, 30                             | 1                     | 0, 10                              |                 | · · · · · · · · · · · · · · · · · · ·      |
| N3                     | 700                  | 0, 10                              | 3                     | 0, 10                              |                 |                                            |
| N4                     | 700                  | 70, 30                             | 3                     | 0, 10                              |                 |                                            |
| N5                     | 700                  | 0, 10                              | 1                     | -20, 120                           | 0.60            |                                            |
| N6                     | 700                  | 70, 30                             | 1                     | -20, 120                           |                 |                                            |
| N7                     | 700                  | 0, 10                              | 3                     | -20, 120                           | 0.40            |                                            |
| N8                     | 700                  | 70, 30                             | 3                     | -20, 120                           | 0.40            |                                            |
| N9                     | 900                  | 0, 10                              | 1                     | 0, 10                              | -               |                                            |
| N10                    | 900                  | 70, 30                             | 1                     | 0, 10                              | 0.20            |                                            |
| N11                    | 900                  | 0, 10                              | 3                     | 0, 10                              | 0.20            |                                            |
| N12                    | 900                  | 70, 30                             | 3                     | 0, 10                              | ন 🗌             |                                            |
| N13                    | 900                  | 0, 10                              | 1                     | -20,120                            | <u> 0.00</u>    |                                            |
| N14                    | 900                  | 70, 30                             | 1                     | -20,120                            | \$              |                                            |
| N15                    | 900                  | 0, 10                              | 3                     | -20,120                            | 0.20            | AExtraction                                |
| N16                    | 900                  | 70, 30                             | 3                     | -20,120                            | -0.20 ▲Me       | thanol ASilylation                         |
| N17                    | 800                  | 0, 10                              | 2                     | 0, 10                              |                 |                                            |
| N18                    | 800                  | 0, 10                              | 2                     | 0, 10                              | -0.40           |                                            |
| N19                    | 800                  | 0, 10                              | 2                     | 0, 10                              |                 |                                            |
| N20                    | 800                  | 0, 10                              | 2                     | 0, 10                              | -0.60           |                                            |
|                        |                      |                                    |                       |                                    |                 |                                            |
| <sup>a</sup> Temperatu | re and duration befo | re extraction. <sup>b</sup> Temper | ature and duration af | ter extraction.                    | -0.80           | ▲Oximation                                 |
|                        |                      |                                    |                       |                                    | -1.00 -0.8      | 30-0.60-0.40-0.20 0.00 0.20 0.40 0.60 0.80 |

#### **Derivatization DoE**

W\*C[1]

# 3. Sample preparation and characterization

- 3.2. Data processing
  - Align peaks by a reference spectrum
  - Region selection
  - Baseline correction
  - Normalisation
  - Scaling
  - Multivariate curve resolution (ex: GC-MS)





# Data pre-processing Methods in GC-MS, LC-MS, NMR

- Baseline correction
- Alignment
- Time-window setting (GC-MS, LC-MS)
- MCR



## Multivariate curve resolution

resolve hyphenated data into chromatographic and spectral profiles.





Jonsson, P.; Johansson, A. I. et al. High-Throughput Data Analysis for Detecting and Identifying Differences between Samples in GC/MS-Based Metabolomic Analyses. *Analytical Chemistry* **2005**, 77, (17), 5635-5642.

 $\geq$ 

Library S

## 4. Evaluation/validation of collected data

#### Κ

|    | 1               | 2        | 3        | 4        | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      | 13      |
|----|-----------------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1  | Primary ID      | Internod | Transger | Wildtype | 15.0638 | 10.4741 | 10.4339 | 10.3936 | 10.3534 | 10.3131 | 10.2728 | 10.2326 | 10.1923 |
| 2  | 'Al1.txt'       | 1        | 1        | 0        | -0,0001 | -0,0005 | -0,0004 | -0,0003 | -0,0004 | -0,0004 | -0,0004 | -0,0005 | -0,0005 |
| 3  | 'Al2.txt'       | 2        | 1        | 0        | 0,00023 | -0,0001 | -0,0002 | -0,0002 | -0,0001 | -0,0001 | -0,0002 | -0,0001 | -0,0001 |
| 4  | 'Al3.txt'       | 3        | 1        | 0        | -0,0002 | -0,0003 | -0,0004 | -0,0003 | -0,0004 | -0,0004 | -0,0004 | -0,0003 | -0,0003 |
| 5  | 'Al4.txt'       | 4        | 1        | 0        | -1,8875 | -0,0003 | -0,0003 | -0,0003 | -0,0003 | -0,0003 | -0,0002 | -0,0003 | -0,0003 |
| 6  | 'Al5.txt'       | 5        | 1        | 0        | -0,0    | 0.0007  | -0,     | -0005   | -0,0006 | -0,0006 | -0,0005 | -0,0006 | -0,0005 |
| 7  | 'Al6.txt'       | 6        | 1        | 0        | 0,00065 | - 1003  | -0,00 3 | -0,0001 | -0,0002 | -0,0002 | -0,0002 | -0,0003 | -0,0003 |
| 8  | 'AI7.txt'       | 7        | 1        | 0        | 0,00067 | 2,6 65  | -4,744  | 5,96972 | 1,93473 | -6,2693 | 4,3772e | 2,37799 | 1,54864 |
| 9  | 'AI7_NMRr1.txt' | 7        | 1        | 0        | 0,00054 | -8,5    | -5,8666 | -0,0001 | -0,0001 | -0,0002 | -0,0001 | -1,0139 | -2,5358 |
| 10 | 'Al8.txt'       | 8        | 1        | 0        | 0,00017 | -0,000  | 0002    | -0,0002 | -0,0002 | -0,0002 | -0,0003 | -0,0002 | -0,0001 |
| 11 | 'BI1.txt'       | 1        | 1        | 0        | 0,00039 | -0,0001 | 0002    | -0,0002 | -0,0001 | -0,0002 | -0,0001 | -0,0002 | -0,0002 |
| 12 | 'Bl2.txt'       | 2        | 1        | 0        | 0,00019 | -0,9001 | -0, 01  | -0,0001 | -0,0001 | -0,0001 | -0,0001 | -0,0002 | -0,0001 |
| 13 | 'BI3.txt'       | 3        | 1        | 0        | 6,61718 | -/ 0003 | -0,0    | -0,0003 | -0,0004 | -0,0003 | -0,0002 | -0,0003 | -0,0002 |
| 14 | 'BI3_NMRr1.txt' | 3        | 1        | 0        | 0,0000  | 9004    | -0_00   | 004     | -0,0004 | -0,0003 | -0,0003 | -0,0004 | -0,0003 |
| 15 | 'Bl4.txt'       | 4        | 1        | 0        | 0,00024 | -0,0001 | -0,0002 | -0,0001 | -0,0001 | -0,0001 | -0,0001 | -0,0001 | -0,0001 |
| 16 | 'BI5.txt'       | 5        | 1        | 0        | 0,00029 | -0,0001 | -0,0002 | -0,0001 | -0,0001 | -0,0001 | -0,0001 | -0,0001 | -0,0001 |
| 17 | 'BI5_R.txt'     | 5        | 1        | 0        | -1,5318 | -0,0003 | -0,0003 | -0,0003 | -0,0003 | -0,0004 | -0,0003 | -0,0003 | -0,0003 |
| 18 | 'Bl6.txt'       | 6        | 1        | 0        | 0,00062 | -0,0002 | -0,0002 | -0,0001 | -0,0001 | -0,0001 | -0,0001 | -0,0001 | -0,0001 |
| 19 | 'BI7.txt'       | 7        | 1        | 0        | 0,00013 | -0,0001 | -0,0004 | -0,0002 | -0,0003 | -0,0003 | -0,0002 | -0,0003 | -0,0003 |
| 20 | 'Bl8.txt'       | 8        | 1        | 0        | 0,00013 | -0,0002 | -0,0002 | -0,0002 | -0,0002 | -0,0002 | -0,0002 | -0,0002 | -0,0002 |
| 21 | 'CI1.txt'       | 1        | 1        | 0        | 0,00023 | -0,0002 | -0,0002 | -0,0002 | -0,0002 | -0,0002 | -0,0002 | -0,0002 | -0,0002 |
| 22 | 'CI1_NMRr1.txt' | 1        | 1        | 0        | 2,87525 | -0,0003 | -0,0003 | -0,0004 | -0,0003 | -0,0003 | -0,0003 | -0,0003 | -0,0003 |

Ν

# What to do?

- Overview of data
- Exploratory analysis
- Multivariate design
- Class-specific study
- Dynamic study
- Visualization
- Interpretation

#### **Principal Component Analysis** Overview, outliers, groups, tendencies $t_2$ PCA $X_1 X_2 X_3$ Comp 1 $(t_1)$ $\tau_1$ $\mathbf{x}_{2}$ Observation iScores (observations) Plane PCA Projection $\mathbf{x}_3$ Comp 2 $(t_2)$ **p**<sub>2</sub> x<sub>1</sub> • ٢ $p_1$ $\mathbf{x}_2$ $X_3$ $\mathbf{X}_1$ Loadings (variables)

## **Overview of data**



-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

#### Overview & data exploration Example: PCA on GC/MS spectra on human plasma



Two phase problem Chloroform /Acetone **Tendences observed** 

## PCA for Multivariate design

Example for choice of calibration and validation sets

Groupings in data Select subset from each meaningful cluster



#### Selection from a database Diverse selection



## Multivariate method – Get results

## Many different methods to choose from

### Linear methods

#### Full rank methods

- Multiple Linear Regression (MLR)
- Stepwise MLR
- Ridge Regression

#### Latent variable regression methods

- Principal Component Regression (PCR)
- Partial Least Squares (PLS)
- Orthogonal Projections to Latent Structures (OPLS)

### **Non-Linear methods**

- Neural Networks (NN)
- Support Vector Machines (SVM)
- Regression trees

# Validation = $\mathbf{f}$ (Prediction,Interpretation)

- Prediction is part of the *statistical validation*, many tools exist
  - External predictions (RMSEP value), cross-validation
  - Many are familiar with these

Examples:

- 1. Predict concentration of active substance in tablet production with NIR spectroscopy
- 2. Predict viscosity in pulp using NIR spectroscopy
- 3. Predict severity of coronary heart disease (CHD) on biofluids with NMR
- 4. Predict biological activity from amino acid sequence (QSAR)
- Interpretation is part of the *chemical / biological validation* (what does it mean?)
  - No direct quantifiable measure as RMSEP exists
  - Model interpretation (e.g. regression coefficients)
    - Pure constituent spectrum
    - "Sequence motif"
    - "Functional profile"
  - Not as common, requires much more effort (communication between disciplines)
     Both are related & complementary in validating models/results

# Validation in disease diagnostics

| Statistical results valid from statistical point of view                                                                                                                                                                                                                                                                                   | <b>Biological</b><br>results are relevant to study                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Prediction of validation dataset (not CV).</li> <li>3 classes: Controls, disease and related disease control group.</li> <li>Realistic measure for the error in the classification of new samples from the same patient population.</li> <li>Will NOT guard against sampling bias nor drift in analytical instruments.</li> </ul> | <ul> <li>Identification of differentially<br/>regulated metabolites and their<br/>associated metabolic pathways.</li> <li>Establish whether the results are in<br/>accordance with known facts or are<br/>spurious, e.g. products of uncontrolled<br/>factors.</li> </ul>                  |
| <ul> <li>Follow-up study in a separate population, analyzed separately in a different lab.</li> <li>Realistic measure of the expected error in classification of new patients.</li> <li>Guard against sampling bias and drift in analytical instruments.</li> </ul>                                                                        | <ul> <li>Follow-up study in a separate<br/>population analyzed separately in a<br/>different lab.</li> <li>Only reliable way to reveal whether<br/>the observed metabolic perturbations<br/>are in fact a product of the investigated<br/>disease, or a product of sample bias.</li> </ul> |

Minimum

Recommended

Madsen, R.; Lundstedt, T.; Trygg, J.; Chemometrics in metabolomics - A review in human disease diagnosis, Analytica chimica acta, in print.

Multivariate calibration Discriminant analysis / classification

### Multivariate calibration, MC Model the relation between two blocks of data

Samples - Powders, molecules, industrial process samples, plasma, tissue...
 Sample characterisation - Spectrometers (NIR,UV, IR, NMR, MS), chromatography, chemical descriptors, gene-arrays, metabolites



Response variable / Additional knowledge

- Focus modelling towards known information (concentration, groupings)
- Model the relation between blocks of data (same samples, different spectra)

Linear prediction model: y = Xb + f

Focus: How to solve for b?

Objective: Provide good fit to estimate y, good predictions for future samples
#### Example: One component system



#### Example: Modeling 1-component model



## But... Chemical / biological data are complex

- Lots of unknown systematic variation mostly due to poor knowledge...
  - strong dietary, environmental, hormonal variations, etc...
  - Experimental variation, sampling, instrumental variation
  - Input material varies with supplier
- Measured signal is the sum of many contributing factors
  - Pharmaceutical tablet formulation (e.g. binders, fillers, active drug, lubricant)
  - Human urine sample (e.g. genetics, diet, gender, age, stress, disease)
  - Plant biotech / Pulp & paper (e.g. wood species, cellulose & lignin content, water, age)
  - In QSAR the molecular descriptor profile is a function of its chemical and biological property/activity/function

# Example: simulation with two component system (overlap)



Spectral profile of Y-orthogonal component

#### Example: Two Gaussian peaks Model interpretation by coefficient profile

PLS regression

**Ridge Regression** 

Linear Neural Net



Negative dips observed!

### PLS - Regression coefficients [**b**<sub>1</sub> **b**<sub>2</sub> ...], one for each Y-variable what do they mean?

 $y_1 = Xb_1 + f_1$ 

- The regression coefficient vector **b** does not represent the estimated pure constituent spectrum
- Its profile must be *orthogonal to all other known and unknown* constituents in X

(Otherwise it will not be good for prediction)

Model overview

PLS, MLR, PCR, RR etc...



#### PLS NIPALS (1980's) Wold, Martens and colleagues

X=TP' + Ey=Tc' + f



#### PLS model

Example: Single-Y, two component system



### What to do, and interpret?

- 1. Use preprocessing filters
  - MSC, SNV, 1,2nd derivatives, wavelet, Fourier, etc
    - Can remove pertinent information, loadings...
- 2. Avoid this variation
  - Improve instrument, sample preparation, and so on ...
    - Requires much knowledge, often not realistic
- 3. Why not ...

Separately model the Y-predictive and Y-orthogonal variation?

- Understand what's going on!!
- Orthogonal signal correction method [Wold S et al. 1998]
- OPLS method [Trygg J & Wold S. 2002]

### The O-PLS framework

#### **Orthogonal Signal Correction (OSC)**

OSC, Wold et al. (1998), Sjöblom et al. (1998), DOSC, Westerhuis et al. (2001) POSC, Trygg et al. (2001), OSC, Fearn (2000), Höskuldsson(2001)

• Basic idea, perform an "inverse PLS model" : Remove *structured noise* (i.e. systematic) from **X** not correlated to **Y** 

$$X = t_{osc} p_{osc}^{T} + X_{E}$$
 (i.e.  $Y^{T} t_{osc}^{T} = 0$ )  
$$X = t_{osc} p_{osc}^{T} + X_{E}$$

Estimate calibration model (e.g. PLS) based on the filtered X<sub>E</sub>

## Y-Orthogonal variation, what is it?

"Impact of nothingness" – Gottfries et al.

For example...

- Experimental problems
- Side reactions causing biproducts
- Non-linearities (e.g. kinetics)
- Within class variation
- Sampling issues
- and so on...



Gottfries, J.; Johansson, E.; Trygg, J.; On the impact of uncorrelated variation in regression mathematics. Journal of chemometrics, **2008**, 22, 565-570.

### Orthogonal PLS (OPLS)

#### Focus modelling towards known information



Trygg J.; Wold, S.; Orthogonal projections to latent structures (O-PLS), Journal of Chemometr.ics, 2002, 16, 119-128

## Multi-block modeling

- Compare & Integrate X and Y in terms of....
  - Analytical platforms, Experimental conditions, Process step, Time (drift), Replication, Pre-treatments, ...
- Understand...
  - Overlap? What is jointly related?
  - What is unique for X, for Y?



### Two block modeling The O2-PLS model



Trygg J.; **O2-PLS for qualitative and quantitative analysis in multivariate calibration**, Journal of Chemometrics, **2002**, 16, 283-293.

Trygg, J.; Wold, S.; **O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter**. *Journal of Chemometrics*, **2003**, 17, 53-64.

## PLS modeling vs OPLS modeling

PLS, MLR, PCR, RR etc...



- Mixes Y-orthogonal and Y-predictive variation
- Uni-directional, Models Y FROM X



OPLS

- Separates Orthogonal and Predictive variation (e.g. 'between block' from 'within block')
- Bi-directional, Models X AND Y

-Only uses predictive variation for modeling Y

## Benefits of OPLS modeling

#### ✓ Model diagnostics:

- $R^2(XY)$ : How much variation in X is correlated to Y, and vice versa?
- $R2(X_{vo})$ : How much is not correlated to Y? (to X?)

#### ✓ Model interpretation

- More focussed components (plots) & easier interpretation
  - Predictive components  $(\mathbf{T}_{p}\mathbf{P}_{p}^{\mathsf{T}})$
  - Y-orthogonal components  $(\mathbf{T}_{o}\mathbf{P}_{o}^{\mathsf{T}})$
- Pure profile estimation

#### ✓ Model (prediction ):

- Understand & correct for faults/mistakes found in Y-orthogonal components
- e.g. experimental, sampling

#### • Multi-block modeling $(X \leftarrow \rightarrow Y)$

Integrate, compare and filter multiple data tables

#### **OPLS** model

Example: Single-Y, two component system

V

1.0

0,9



#### **OPLS** model

Example: Two component system,

where unknown variation is correlated to known y



Y-orthogonal component

### PLS x O-PLS

Example: Two component system, where unknown variation is **strongly** correlated to known y











84 % variation





Predictive profile

Y-orthogonal profile

Difficult to relate PLS loadings to the variation it represents

#### **OPLS**



where unknown variation is correlated to known y



Y-orthogonal component

### Single-Y vs multi-Y OPLS models



Trygg J.; **Prediction and spectral profile estimation in multivariate calibration**, Journal of Chemometrics, **2004**, 18, 166-172.

### **OPLS** as a filter

#### Example: Calibration transfer of near infrared spectra

- Instrument A, B used to measure NIR spectra of an active pharma compound
- 15 batches specially selected to cover a variation of the water content
- A reference spectrum measured every second
- Water content varied from 1.38 to 4.47 wt./wt.% (Karl–Fischer titration)
- Y = class (-1,1) [Instrument A vs Instrument B]



Sjöblom, J.; Svensson, O.; Josefson, M.; Kullberg, H.; Wold, S.; An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra, Chemometrics and Intelligent Laboratory Systems, 1998, 44, 229–244.

#### **OPLS** as a filter

#### Example: Calibration transfer of near infrared spectra



#### Example PAT: Binary powder

- Diffuse reflectance NIR spectroscopy
- Mixture of two powders with markedly different particle size
- 11 batches of powders, 0% to 100% in steps of 10%.
- X = NIR spectra (SNV) in the range 1080-2025 nm
- Y = % binary mix of powders

**PLS model scores** 



Figure: Schematic overview of the vertical cone mixer and the fibre-optic probe set-up.





#### Example PAT: Binary powder Non-linearities transparent in OPLS loading profiles



.2X[1] = 0,983807 R2X[2] = 0,0137599 R2X[3] = 0,00107454 R2X[4] = 0,0005891

## **OPLS-derived** methods

- Bifocal OPLS (BIF-OPLS)
- Kernel OPLS
- Multi-block modeling OPLS

. . . . . . . . . . . . . .



### Non-linear modeling techniques Kernel-OPLS

- There are situations where linear modeling techniques are insufficient
  - Biological and chemical systems, image analysis, etc.
- Many alternatives exist for prediction and classification
  - Artificial neural networks (ANNs)
  - Bayesian networks
  - Support Vector Machines (SVMs)
  - Kernel-based Partial Least Squares (KPLS)

#### • K-OPLS

- Benefits are related to the interpretation of Y-predictive and Y-orthogonal scores
- Not possible with KPLS or SVMs

Rantalainen, M.; Bylesjo, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J.; Kernel-based orthogonal projections to latent structures (K-OPLS), Journal of chemometrics, 2007, 21, 376-385.





#### **Kernel-based methods**

Image from <a href="http://www-kairo.csce.kyushu-u.ac.jp/~norikazu/research.en.html">http://www-kairo.csce.kyushu-u.ac.jp/~norikazu/research.en.html</a>

- Kernel-based methods utilize  $\Phi(\mathbf{X})$  instead of  $\mathbf{X}$  to predict  $\mathbf{Y}$
- The function  $\Phi(\cdot)$  extends **X** into a high-dimensional space (*feature space*)
- In this higher-dimensional space, a linear model is used for regression or classification
- The model is non-linear in the original space



# Multi-block modeling OPLS (in development)



## Visualisation of OPLS model

STOCSY & S-plot: correlation and covariation combined into one plot



## Covariation and correlation

- **Covariation** is the measure of how much two variables vary together (strength)
  - Covariation is scale dependent (i.e. dependent upon the size of variability of the two variables)
  - Can hold positive, 0, and negative values

Cov  $(\mathbf{t}, \mathbf{y}) = [(\mathbf{t})^{T}(\mathbf{y})] / (N-1)$ 

- Correlation = Fit is a dimensionless measure of covariation
  - Correlation is scale invariant (i.e. not dependent upon the size of variability of the two variables)
  - Can hold values between -1 to +1

Corr  $(\mathbf{t}, \mathbf{y}) = [Cov (\mathbf{t}, \mathbf{y}) / (||\mathbf{t}|| ||\mathbf{y}||)] (N-1)$ 

#### Understand the most influential metabolites related to class separation → S-plot of the OPLS predictive component



#### Understand the most influential metabolites (putative) NOT CORRELATED to class separation → S-plot of the OPLS orthogonal component



## Examples
## 2-class separation OPLS

### Disease diagnosis: Rheumatoid Arthritis – brief background

- Worldwide prevalence of approximately 1%
- <u>Autoimmune disease</u>, the body attacks itself, aetiology largely unknown
- Treatment; irreversible disease, no known cure, medication to maintain mobility and ease pain
- Early diagnosis critical
  - More successful treatment with early medication
- Diagnosis for rheumatoid arthritis
  - Physical examination, antibodies (today not specific for RA), X-ray, MRI
- <u>New diagnostic tools are needed...</u>

### Two class separation - Rheumatoid arthritis Blood serum samples from 40 individuals (20 RA/20 Control)



Group separating direction Specific metabolites for healthy and diseased

### Rheumatoid arthritis: Control vs. RA Understand biochemical differences

- Significant (subset) metabolites for separation of RA samples from healthy controls.
  - Variables represent endogenous metabolites



# RA: Comparison of the human case and animal models

- Great overlap of metabolites between humans and animals
  - Different metabolites show overlap in different animal models
  - Allows for identification of relevant animal models
  - Selection of model system for treatment studies

|       | Human Rheumatoid | Mouse Collagen    | Rat Adjuvant      |  |
|-------|------------------|-------------------|-------------------|--|
| BM    | Arthritis        | Induced Arthritis | Induced Arthritis |  |
| EC001 | ↑                | na                | Na                |  |
| EC002 | ↑                | ?                 | ?                 |  |
| EC003 | 1                | $\checkmark$      | $\rightarrow$     |  |
| EC004 | 1                | 0/↓               | $\checkmark$      |  |
| EC005 | $\checkmark$     | na                | na                |  |
| EC006 | $\checkmark$     | $\checkmark$      | $\checkmark$      |  |
| EC007 | $\checkmark$     | $\checkmark$      | $\checkmark$      |  |
| EC008 | $\checkmark$     | $\checkmark$      | 1                 |  |
| EC009 | $\checkmark$     | $\checkmark$      | $\checkmark$      |  |
| EC010 | $\checkmark$     | 1                 | ↑                 |  |
| EC011 | $\checkmark$     | 0/↓               | $\checkmark$      |  |
| EC012 | $\checkmark$     | na                | na                |  |
| EC013 | $\checkmark$     | $\checkmark$      | $\checkmark$      |  |
| EC014 | $\checkmark$     | $\checkmark$      | ?                 |  |
| EC015 | $\checkmark$     | $\checkmark$      | $\checkmark$      |  |
| EC016 | $\checkmark$     | ?                 | $\checkmark$      |  |
| EC017 | 0                | $\checkmark$      | $\checkmark$      |  |
| EC018 | ^                | 1                 | √/?               |  |
| EC019 | $\checkmark$     | $\checkmark$      | $\checkmark$      |  |
| EC020 | $\checkmark$     | √/?               | $\checkmark$      |  |
| EC021 | ?                | ^/?               | $\uparrow$        |  |
| EC022 | $\checkmark$     | $\checkmark$      | $\rightarrow$     |  |
| EC023 | 0                | $\checkmark$      | $\rightarrow$     |  |
| EC024 | ^                | $\checkmark$      | 0/↑               |  |
| EC025 | ↑                | $\checkmark$      | $\rightarrow$     |  |
| EC026 | 0/个              | $\checkmark$      | <b>Λ</b>          |  |

## RA: Comparison of therapies in animal model

- Metabolites levels are affected by administered therapeutics
  - New drug (X) restore levels in more metabolites compared to MTX\*
  - Useful in development of novel drugs
  - Tool in clinical studies to verify therapeutic effect in clinical studies
  - Concomitant development of novel drug and diagnostic test, theranostics?

|       | Vehicle      | МТХ           | х            | х            | х            |
|-------|--------------|---------------|--------------|--------------|--------------|
|       |              |               | 1mg          | 3mg          | 10mg         |
| EC004 | 0/↑          | $\rightarrow$ | $\checkmark$ | 0/↓          | $\checkmark$ |
| EC006 | 0/个/?        | 0/?           | 0            | 1            | 1            |
| EC007 | $\checkmark$ | 0/↑           | 0/↑          | 0/↓          | 1            |
| EC009 | 0            | 1             | $\checkmark$ | 1            | 1            |
| EC010 | 1            | 1             | 1            | $\uparrow$   | 1            |
| EC011 | 0            | 0/↓           | $\checkmark$ | 0/↓          | 1            |
| EC012 | 0/↓          | 1             | 0/↓          | $\uparrow$   | 1            |
| EC013 | $\uparrow$   | 0/个           | 0/↓          | $\uparrow$   | 0/↑          |
| EC014 | $\uparrow$   | 0/?           | 1            | 1            | 1            |
| EC015 | 0/↑          | 1             | 0/↓          | 1            | 1            |
| EC016 | 0            | $\checkmark$  | 1            | $\uparrow$   | $\checkmark$ |
| EC017 | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\downarrow$ |
| EC018 | $\checkmark$ | $\checkmark$  | $\checkmark$ | 0/↑          | 0/↑          |
| EC019 | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| EC022 | $\uparrow$   | 1             | 0/个          | 1            | 1            |
| EC023 | $\checkmark$ | 0/↓           | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| EC024 | $\checkmark$ | $\downarrow$  | $\downarrow$ | $\checkmark$ | $\checkmark$ |
| EC025 | $\checkmark$ | $\checkmark$  | $\downarrow$ | $\checkmark$ | $\checkmark$ |
| EC026 | $\uparrow$   | $\uparrow$    | $\uparrow$   | $\uparrow$   | $\uparrow$   |

## Multi-class separation OPLS

### OPLS in multi class metabolomics Example: Plant metabolomics on Poplar

**PttPME1 expression was up and down regulated in transgenic aspen trees** PME enzyme activity in wood forming tissues was correspondingly altered

<u>Lines in this study</u> WT poplar 2B – up regulated *PttPME1* gene 5- down regulated *PttPME1* gene

**Metabolomics** study of xylem and phloem, here only the xylem results are presented.



# OPLS-DA model of Line 5 vs Wildtype



OPLS model 1 predictive component 3 orthogonal components R<sup>2</sup>X(p)=12% R<sup>2</sup>X(o)=20% Q<sup>2</sup>Y=80% R<sup>2</sup>Y=96%



Understand the most influential metabolites (putative) related to class separation (transgene vs wildtype) → S-plot of the OPLS predictive component



Understand the most influential metabolites (putative) NOT CORRELATED to class separation

### **Orthogonal S-plot**



## Multiblock modeling - O2PLS

### Combined profiling projects at UPSC



### Combined profiling of transgenic Poplar



## Combined profiling of transgenic Poplar



### Combined profiling of transgenic Poplar



## A combined profiling study of *Populus tremula* × *P. tremuloides*, investigating **short-day induced** effects at transcript and metabolite levels



Mutant



## **Dynamic modeling**

## Dynamic modeling

- Biological systems are dynamic processes that react to changes in their environment at both the cellular and organism levels.
- Modeling the time-related behavior of biological systems is essential for understanding the biology and underlying dynamics.



• PCA scores showing the trajectory of biochemical changes in the kidney after the administration of 2-bromoethanamine.

- Some animals respond to the intoxication faster than others, even though they are of uniform age and sex and were raised under the same conditions.
- This is a typical type of response, with 'slow' and 'fast' responders being characteristic of many drugs and toxins.

Nicholson, J.; Connelly, J.; Lindon, J.C.; Holmes, E.; Metabonomics: a platform for studying drug toxicity and gene function, Nature Reviews Drug Discovery, **2002**, 1, 153-161.

## Example: Functional foods study

Sampling period

2

- Functional foods: Foodstuffs with a documented healthpromoting effect – besides energy addition
- Centre for Human Studies of Foodstuffs, Sweden
  - Inclusion/exclusion criteria
  - 9 individuals given prepared foodstuff
  - Multiple visits document effect over time





Time

### Functional foods study:

Individual metabolism vs metabolic response to food intake



Individuals metabolism baseline greater than the effect of foodstuffs But... we are interested in the effect of foodstuffs

## Dynamic (time-series) modeling

- In 'omics (e.g. metabolic profiling) studies
  - the sampling rate and number of time points are often restricted (experimental, cost and biological constraints (< 4-15 time points).</li>
  - Chemometrics:
    - MSPC batch modeling (Antti et al)
    - ANOVA based modeling, e.g. ASCA (Smilde et al), ANOVA-PCA (Harrington et al)
    - Dynamic Bayesian networks (Kim et al)
    - Auto-regressive moving average (ARMA, Box et al)
    - SMART analysis (Keun et al)
    - Independent component analysis (Morgenthal et al)
    - PARAFAC (Forshed et al)

Existing strategies for modeling dynamic data rests on two major assumptions:
(1) The multivariate profile or fingerprint is comparable over all individuals.
(2) The global temporal behavior is aligned between all individuals.

## Dynamic modeling

- Two alternative approaches using the OPLS model
  - Use OPLS property of single predictive components (+ Orthogonal components)
- 1. Piece-wise dynamic modeling (Rantalainen et al)
- 2. Dynamic modeling of individual effect profiles (Trygg et al)



O-PLS model loading, individual 4



## Understanding biochemistry



R2X[1] = 0,31 R2X[2] = 0,35

Myo-inositol can have an effect on aminotransferase, supported by increase of ornithine, citrate and acetate. Myo-inositol has shown to have protective effect on cardiac dysfunction in diabetic rats.

#### **Example:** Dynamic modeling **Kidney transplant study**

NMR profiles of human urine samples after surgery

#### 1.) Principal component analysis (PCA) t1/t2 score

(OPLS-Class(11)), 1318

#### Post-operative time trajectory







#### O-PLS model loading, individual 4



#### Example: Dynamic modeling Kidney transplant study

NMR profiles of human urine samples after surgery



## **Concluding remarks**

- Metabolomics has a promising future in different areas in the post-genomic era
- Chemometrics shall be used in all steps of the metabolomics pipelines
- New methods in chemometrics are needed to understand huge loads of information
- Multi-block modeling strategies needed
- OPLS approach is appropriate to model data from metabolomics
- O-PLS is a multivariate prediction method, similar to PLS,
  - separates two different types of variations in the modelled data
  - TpPp = X-Y related variation
  - ToPo = Y-Orthogonal variation in X (unique variation in X)
- Regression coefficient profile b should not be used for interpretation
- OPLS allows model diagnostics, prediction and interpretation
- Different strategies using OPLS/O2PLS are useful for different purposes

## Acknowledgements

#### <u>Chemistry dep, Umeå</u> <u>University</u>

M. Bylesjö H. Stenlund R. Madsen M. Hedenström S. Wiklund P. Jonsson H. Antti

#### Uppsala University

T. Lundstedt

J. Olsson

#### Umeå University Hospital

SB. Rantapää, GM Alenius

#### Lund University & MAS

Å. Lernmark

L. Åkesson

#### **Imperial College**

J. Nicholson E. Holmes M. Rantalainen O. Cloarec Umeå Plant Science Center, Umeå Univ, Sweden T. Moritz D. Eriksson A. Johansson A. Sjödin R. Nilsson A Grönlund S Jansson B Sundberg G. Wingsle J. Karlsson V. Srivastava R. Bahlerao G. Sandberg

#### Italy (Univ. Siena and more)

M. Calderisi **A. Vivi** M. Tassini M Valensin, M. Carmellini, M. Cocchi

#### <u>Riken University</u>

M. Kusano

P. Lek F. Seifert **AcureOmics** J. Gabrielsson **Anamar Medical** G Ekström **SweTreeTechnologies** M Hertzberg K Johansson A Karlsson Umetrics AB, E. Johansson L. Eriksson M. Farll S. Wold Chenomx

Acure Pharma

J. Newton A. Weljie

Swedish Foundation for Strategic Research (SSF) Swedish Research Council FORMAS FuncFibre Knut & Alice Wallenberg Foundation GlaxoSmithKline AstraZeneca MKS Umetrics